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Abstract
We obtain an exact solution of the ideal magnetohydrodynamics equations in
(3+1) dimensions. The construction of the solution is based on the invariants of
the group O(3) of rotations. It is a deep generalization of the known solution,
which describes a radial flow with spherical waves. It is shown that in the
irreducible solution, the velocity and magnetic field vectors of the particle are
coplanar to the radius vector of the particle. The solution is represented as
an involutive invariant subsystem of PDEs with two independent variables and
finite relation, which contains a functional arbitrariness.

PACS numbers: 47.65.+a, 02.20.Qs, 02.30.Jr
Mathematics Subject Classification: 76W05, 76M60, 35C05, 35N10

1. Introduction

In this paper, we construct an exact solution to the ideal magnetohydrodynamics equations.
The solution is obtained on the concept of the ‘singular vortex’, which was recently developed
on the basis of the symmetry approach. From the group-theoretical point of view, the singular
vortex is a partially invariant solution with defect 1, constructed on the group of rotations
in three-dimensional space. The main difficulty in the procedure of construction of partially
invariant solutions is a completion to involution of the overdetermined system for non-invariant
functions. It is a branching process, which sometimes becomes quite complicated. In this
paper the investigation of the singular vortex is carried out completely. The solution is
described in terms of a finite integral, which contains a functional arbitrariness, and in terms
of the involutive reduced system of PDEs with two independent variables. The paper describes
a purely mathematical construction of the solution. Here we do not deal with the physical
features and interpretation of the plasma motion, governed by the singular vortex. The latter
will become an object of investigation for other papers, which we hope to present in the near
future.
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The first section of the paper represents a brief description of the singular vortex
concept. The subsequent sections contain the analysis of the singular vortex in the ideal
magnetohydrodynamics equations.

2. The singular vortex: general concept

In the space R
3(x, y, z)× R

3(u, v,w), a group O(3) of simultaneous rotations of the subspaces
R

3(x, y, z) and R
3(u, v,w) is given. The corresponding Lie algebra is generated by the

following operators:

X1 = z∂y − y∂z + w∂v − v∂w,

X2 = x∂z − z∂x + u∂w − w∂u,

X3 = y∂x − x∂y + v∂u − u∂v.

(2.1)

Here and below ∂x ≡ ∂/∂x. In order to check the necessary conditions of existence of
O(3)-invariant solution, the matrix of coefficients of operators (2.1) is to be written as

M(ξ |η) =

 0 z −y 0 w −v

−z 0 x −w 0 u

y −x 0 v −u 0


 .

One can easily verify that

rank M(ξ) < rank M(ξ |η). (2.2)

Here M(ξ) is a matrix of the first three columns of M(ξ |η). Relation (2.2) proves a well-
known fact [2, 3] that a non-singular O(3)-invariant solution of any system of equations for
the sought functions u = (u, v,w) and independent variables x = (x, y, z) does not exist.
However, one can use an ansatz

u = f (|x|)x, (2.3)

which corresponds to a singular O(3)-invariant solution. Relations (2.3) define a singular
manifold of the group O(3) since rank M(ξ) = rank M(ξ |η) = 2 in the points of the manifold
(2.3). It is also the invariant manifold as long as Xj(u − f (|x|)x) = 0 whenever (2.3) holds
(j = 1, 2, 3). Solutions of the type (2.3) are usually called the rotationally invariant ones.

Group O(3) gives rise to another type of solution, namely, a partially invariant one. Let
us observe a spherical coordinate system

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. (2.4)

The decomposition of a vector field u on the basis of a spherical coordinate system gives

ur = u sin θ cos ϕ + v sin θ sin ϕ + w cos θ,

uθ = u cos θ cos ϕ + v cos θ sin ϕ − w sin θ,

uϕ = −u sin ϕ + v cos ϕ.

(2.5)

With these notations, invariants of the O(3) can be written as follows:

r = |x|, ur , u2
θ + u2

ϕ.

The representation of invariant part of solution is distinguished by the following conditions:

ur = U(r), u2
θ + u2

ϕ = M2(r). (2.6)

Only two of the three functions, which determine a vector field u, are specified by the equalities
(2.6). The third value is assumed to be an arbitrary function of (r, θ, ϕ), namely

uθ = M cos ω, uϕ = M sin ω,

ω = ω(r, θ, ϕ).
(2.7)



Singular vortex in magnetohydrodynamics 4503

For any system of equations, which admits the Lie group O(3), relations (2.6), (2.7) define
a representation of the O(3) partially invariant solution. Functions U and M will be called
hereafter invariant ones since they depend only on the invariant variable r. In contrast,
function ω, which depends on all the independent variables (r, θ, ϕ), will be called non-
invariant.

Note that any other sought functions, which are not transformed under O(3) action must
be assumed as invariant, i.e. dependent only on the invariant variable r. On the other hand, if
equations involve some additional independent variables, for example, time t, the dependence
on these variables must be added to both invariant and non-invariant functions.

The substitution of the obtained representation of the solution into the investigated system
of equations usually gives equations of two types: invariant ones, which involve only invariant
functions and variables, and non-invariant ones, which involve the non-invariant function ω.
The latter equations should be observed as an overdetermined system for the non-invariant
function ω. Its compatibility conditions enlarge the invariant subsystem. Solution of the
invariant subsystem and consequent determination of the non-invariant function give the
solution of the initial equations.

First, the solution of the type (2.6), (2.7) was investigated by Ovsyannikov [1] for Euler
equations for an ideal compressible and incompressible fluid. In his work, the overdetermined
system for function ω was completed to involution. Its general implicit solution, which
involves an arbitrary function of two arguments, was also given. All the invariant functions
were determined from the well-defined system of PDEs with two independent variables. The
main features of the fluid flow, governed by the obtained solution, were pointed out. Namely,
it was shown that trajectories of particles are flat curves in three-dimensional space. The
position and orientation of the plane, which contains the trajectory, depend on the particle’s
initial location. Another noted feature is that the continuous solution can be determined not
in the whole space, but in some moving or stationary channels.

The title of Ovsyannikov’s article ‘singular vortex’ is related to the solution with a special
choice of the non-invariant function, which guarantees the continuous initial data. Afterwards,
the name ‘singular vortex’ was assigned to all solutions, which are partially invariant with
respect to the group O(3).

Independent investigation of the O(3) partially invariant solution for ideal incompressible
fluid was performed by Popovych [4]. The article includes the investigation of the
overdetermined system for non-invariant function and also the investigation of symmetry
reductions of the invariant subsystem. Further analysis of the singular vortex for an ideal
compressible fluid can be found in [5, 6].

The general concept of singular vortex was proposed by L V Ovsyannikov at his lecture
at the conference ‘New mathematical models at mechanics: construction and investigation’,
which was held on May 10–14, 2004 in Novosibirsk, Russia. Ovsyannikov has also shown
examples of an acoustic singular vortex and an irrotational singular vortex. According to the
suggestion by the corresponding member of the Russian Academy of Science, S I Pohozhaev,
the singular vortex is now sometimes called the ‘Ovsyannikov vortex’.

In this work, we investigate a singular vortex for the mathematical model of ideal
compressible magnetohydrodynamics. The analysis is complicated by simultaneous presence
of two vector fields: velocity and magnetic. The system for the non-invariant function ω is
strongly overdetermined but it is possible to find a condition under which the system is in
involution and has a functional arbitrariness of the solution. The latter condition is that for any
particle of fluid its radius vector, velocity and magnetic field vectors are coplanar. In this case
the non-invariant function is determined from the implicit finite (not differential) equation,
which involves one arbitrary function of one argument.
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Figure 1. The decomposition of the velocity and magnetic field vectors.

A review of other symmetry reductions of MHD equations can be found in the handbook
[8]. The most recent papers related to the construction of MHD exact solutions are [9, 10]. In
particular, the latter contains the O(3) singular invariant solution of the form (2.3).

3. Preliminary information

The equations for an ideal fluid with infinite conductivity are the following:

Dρ + ρ div u = 0,

Du + ρ−1∇p + ρ−1H × rot H = 0,

Dp + A(p, ρ) div u = 0,

DH + H div u − (H · ∇)u = 0,

div H = 0, D = ∂t + u · ∇.

(3.1)

Here u = (u, v,w) is the velocity vector, p, ρ are pressure and density, H = (H 1,H 2,H 3)

is the magnetic field. All functions depend on time t and coordinates (x, y, z). Function
A(p, ρ) depends on the state equation of the fluid. Note that system (3.1) is overdetermined; it
contains nine equations for eight sought functions. However, the system (3.1) is in involution
since the last equation can be observed as a restriction for the initial data. According to the
induction equation if the last equation is satisfied at some moment of time, then it will also be
valid for all times of existence of the solution.

The admitted group for the system (3.1) for the case of polytropic state equation
A(p, ρ) = γp (γ is the adiabatic exponent) is known [7, 8]. It is a 13-dimensional extension
of the Euclidean group via time translation and dilatation.

The admitted group includes a simple subgroup O(3) of simultaneous rotations in the
spaces R

3(x), R
3(u) and R

3(H). Construction of the singular vortex for equations (3.1)
demands calculation of invariants of O(3) in the space of functions and variables.

4. The representation of the solution

For convenience, we observe the spherical coordinate system (2.4). Vectors u and H are
decomposed by spherical frame according to (2.5). The following individual notations of
components of velocity and magnetic field vectors are introduced (see figure 1):

vr = U, vθ = M cos 	, vϕ = M sin 	;
Hr = H, Hθ = N cos 
, Hϕ = N sin 
.

(4.1)
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Here U and H are radial components of u and H . Functions M and N denote the absolute
values of its components tangential to spheres r = const. Functions 	 and 
 are the angles
between the tangential components of u and H and the meridional direction.

In these notations the invariants of the group O(3) can be chosen as follows:

t, r, U,M,H,N,	 − 
,p, ρ. (4.2)

According to the described algorithm, the representation of the partially invariant solution is
constructed in the form

U = U(t, r), M = M(t, r), H = H(t, r), N = N(t, r),


 = σ(t, r) + ω(t, r, θ, ϕ), 	 = ω(t, r, θ, ϕ), p = p(t, r), ρ = ρ(t, r).

(4.3)

Substitution of the representation (4.3) into system (3.1) gives equations of the singular
vortex.

5. The reduced equations

First of all let us observe a transformation of continuity equation (first equation of (3.1)) under
the substitution (4.3). It is convenient to introduce a new invariant function h(t, r), defined by
the equality

D0ρ + ρ(r−2(r2U)r − r−1hM) = 0, D0 = ∂t + U∂r . (5.1)

Here and below the lower indices t, r, θ and ϕ denote the corresponding partial derivatives.
From the continuity equation there follows the equation for the non-invariant function ω:

sin θ sin ωωθ − cos ωωϕ − h sin θ − cos θ cos ω = 0. (5.2)

The function h plays a crucial role in description of a fluid motion, governed by the obtained
solution.

There are another two equations, which involve only invariant functions. These are

D0U + ρ−1(pr + N(N)r + r−1N2) − r−1M2 = 0,

D0p + A(p, ρ)(r−2(r2U)r − r−1hM) = 0, D0 = ∂t + U∂r .
(5.3)

The first equation in (5.3) follows from the radial momentum equation, and the second equation
in (5.3) is the energy equation. Another six equations of the system (3.1) with (4.3) substituted
sufficiently depend on function ω and its derivatives.

HN sin σωr + r−1N2 sin σ cos(σ + ω)ωθ + r−1N2 sin σ sin−1 θ sin(σ + ω)ωϕ

+ ρD0M + HN sin σσr − H cos σ(N)r + r−1MUρ

+ N2 cot θ sin σ sin(σ + ω) − r−1HN cos σ = 0. (5.4)

Mωt + (MU − ρ−1HN cos σ)ωr + r−1(M2 cos ω − ρ−1N2 cos σ cos(σ + ω))ωθ

− (rρ sin θ)−1(N2 cos σ sin(σ + ω) − M2ρ sin ω)ωϕ

− ρ−1HNσr − H sin σ(N + r(N)r)

− (rρ)−1N2 cot θ cos σ sin(σ + ω) + r−1M2 sin ω = 0. (5.5)

sin θ(−HM sin ω + NU sin(σ + ω))ωθ + (HM cos ω − NU cos(σ + ω))ωϕ

+ r sin θHt − NU cos θ cos(σ + ω) + HM cos θ cos ω = 0. (5.6)

HM sin σωr − D0N + M cos σHr − r−1N(rU)r + r−1H cos σ(rM)r = 0. (5.7)

Nωt + (NU − HM cos σ)ωr + ND0σ + r−1 sin σ(rHM)r = 0. (5.8)



4506 S V Golovin

−N sin θ sin(σ + ω)ωθ + N cos(σ + ω)ωϕ + sin θr−1(r2H)r + N cos θ cos(σ + ω) = 0.

(5.9)

Equations (5.4), (5.5) are the momentum equations in the direction tangential to sphere
r = const. The next equations (5.6)–(5.8) follow from the induction equations in projections
to the radial and tangential directions. Finally, equation (5.9) is Gauss’ law div H = 0.

Equations (5.2), (5.4)–(5.9) form an overdetermined quasilinear system for the non-
invariant function ω. Its compatibility conditions enlarge the subsystem (5.1), (5.3) for the
invariant functions.

6. The irreducibility conditions

Now we restrict our investigations to the case of irreducible partially invariant solutions [2].
This means that we demand the solutions (4.3) not to be invariant of rank 2 with respect
to any subgroup of the group, admissible by equations (3.1). According to the sufficient
condition of reducibility of partially invariant solutions [2], this leads to the following. It
would be impossible to express all the first-order derivatives of the function ω from the
overdetermined systems (5.2), (5.4)–(5.9). In other words, this condition means that the
function ω is determined by equations (5.2), (5.4)–(5.9) with a functional arbitrariness. To
check the irreducibility condition one has to write a matrix of coefficients of ω’s derivatives
in systems (5.2), (5.4)–(5.9) and, then, to remove all minors of rank 4 of this matrix. The
direct computations show that only four cases are possible when the matrix of coefficients has
rank 3 or less, namely

1. N = 0, 2. H = 0, 3. M = 0, 4. σ = 0. (6.1)

Note that case 4 of (6.1) corresponds to 	 = 
. It means that the radius vector, velocity
and magnetic field vectors at any point are coplanar. Cases 1 and 3 can be considered as special
degenerate subcases of 4, when the magnetic field vector or velocity vector is collinear to the
radius vector of the point. In any case, we will consider all four possibilities (6.1) separately
in order to simplify the analysis of the equations. In these investigations we omit possibilities
which lead to known solutions: pure gas dynamics H = 0 or radial solution of the type (2.3)
M = N = 0. Also, for physical reasons we consider density ρ and pressure p to be positive
functions: ρ > 0, p > 0.

7. Radial magnetic field

Let N ≡ 0,M �= 0. The number of invariant equations (5.1), (5.3) is increased by the
following equations. From (5.4) it follows that

D0M + r−1UM = 0. (7.1)

Equation (5.6), taking into account (5.2), gives

Ht − r−1hHM = 0. (7.2)

Multiplying (5.7) by cos σ , (5.8) by sin σ and summing lead to

(rHM)r = 0. (7.3)

Finally, equation (5.9) simplifies to

(r2H)r = 0. (7.4)



Singular vortex in magnetohydrodynamics 4507

The overdetermined system for ω in this case consists of equation (5.2) and two equations,
which follow from (5.5) and from linear combination of (5.7) and (5.8). The latter two
equations for ω are

r sin θM−1ωt + r sin θUM−1ωr + sin θ cos ωωθ + sin ωωϕ + cos θ sin ω = 0, (7.5)

ωr = 0 (7.6)

From (7.6) together with (5.2), (7.5) it follows that

(M/r)r = 0, hr = 0. (7.7)

The compatibility condition of equations (5.2) and (7.5), which was obtained in [1] is

D0h = r−1M(1 + h2−). (7.8)

Thus, the system of magnetohydrodynamics equations (3.1) on the solution (4.3) in the case
of radial magnetic field is reduced to the invariant subsystem and overdetermined system in
involution for the non-invariant function ω. The invariant subsystem consists of equations
(5.3) (with N = 0), equations (7.1)–(7.4) and also equations (7.7), (7.8). Integration of
equations (7.1)–(7.4), (7.7) gives

M = a(t)r, U = −r
a′(t)
2a(t)

, H = 1

r2b(t)
, h = − b′(t)

a(t)b(t)
. (7.9)

Here a(t) and b(t) are arbitrary functions. The expression for function ρ follows from (5.1)

ρ = a(t)3/2

b(t)
ρ0

(
r
√

a(t)
)
. (7.10)

Here ρ0 is an arbitrary function. Equation (7.8) produces the restriction for functions a(t) and
b(t):

ab′′ − a′b′ + a3b = 0, (7.11)

which can be integrated as(
b′

a

)2

+ b2 = C2
1 , C1 = const.

The latter is also integrated in the form

b(t) = C1 cos(τ + C2), τ =
∫ t

0
a(s) ds, C1, C2 = const.

Using the transformations of time and space dilatation and time shift, admitted by the MHD
equations (3.1), one can make C1 = 1, C2 = 0.

Only two equations (5.3) of the invariant subsystem remain. After substitution of
representations (7.9), (7.10) the latter equations form an overdetermined system for function
p(t, r). For convenience let us introduce new variables (Lagrangian coordinates) (t, r) →
(t, λ), λ = r

√
a. In the new variables equations (5.3) become

pλ = λρ0(λ)α(t), pt + A(p, ρ)β(t) = 0,

α(t) =
√

a

b

((
a′

2a

)′
−

(
a′

2a

)2

+ a2

)
, β(t) = b′

b
− 3a′

2a
.

(7.12)

The compatibility condition of equations (7.12) is

ρ ′
0(λ)

λρ0(λ)
Aρ

a(t)3/2

b(t)
β(t) + α(t)β(t)Ap + α′(t) = 0. (7.13)
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The variables t and λ in (7.13) must be separated. In the general case it produces the restrictions
on the function A(p, ρ), i.e. on the state equation of the fluid. Let us observe a case of the
polytropic state equation p = Sργ . Here S is an entropy and γ is a polytropic exponent. In
this case A(p, ρ) = γp. Equation (7.13) becomes

γα(t)β(t) + α′(t) = 0.

Integration of this equation using the expression for β(t) (7.12), we obtain

α = κ

4

(
a3/2

b

)γ

, κ = const.

Substitution of the expression for α(t) from (7.12) into the latter equation gives an equation
for the function a(t):

2aa′′ − 3a′2 + 4a4 = κ
a3(γ +1)/2

bγ−1
. (7.14)

An expression for the pressure p follows from the system (7.12):

p = p0(λ)a(t)3/2γ b(t)−γ , p0(λ) =
∫

λρ0(λ) dλ.

The overdetermined system for the function ω consists of equations (5.2), (7.5), (7.6).
This system is in involution of the solutions of the invariant subsystem. Moreover, it can be
completely integrated. The general solution ω = ω(t, θ, ϕ) of system (5.2), (7.5), (7.6) is
determined in implicit form as

F(η, ζ ) = 0, (7.15)

where invariants η and ζ are

η = cos τ sin θ cos ω − sin τ cos θ,

ζ = ϕ + arctan
sin ω cos τ

cos θ cos ω cos τ + sin θ sin τ
.

(7.16)

Summarizing all, we can formulate the following statement.

Theorem 1. The solution of magnetohydrodynamics equations (3.1) of special vortex type
(4.3) for the polytropic state equation p = Sργ and for the pure radial magnetic field is
determined by the formulae

M = a(t)r, U = −r
a′(t)
2a(t)

, H = 1

r2b(t)
, h = − b′(t)

a(t)b(t)
,

ρ = a(t)3/2

b(t)
ρ0(λ), p = p0(λ)a(t)3/2γ b(t)−γ , p0(λ) =

∫
λρ0(λ) dλ,

λ = r
√

a(t), b(t) = cos τ, τ =
∫ t

0
a(s) ds.

(7.17)

Here the function a(t) satisfies equation (7.14). The non-invariant function ω is implicitly
determined by formulae (7.15), (7.16) with function τ , defined by formulae (7.17).

8. Magnetic field with zero radial component

Here we observe case 2 from (6.1), namely H = 0, N �= 0. From (5.9) after cancellation of
the common factor N we have

−sin θ sin(σ + ω)ωθ + cos(σ + ω)ωϕ + cos θ cos(σ + ω) = 0. (8.1)
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Next, we calculate the compatibility condition of equations (5.2) and (8.1). The compatibility
conditions are calculated in the usual way. We sought the solution ω = ω(t, r, θ, ϕ) of
equations (5.2) and (8.1) in an implicit form: �(t, r, θ, ϕ, ω) = 0. Then the equations are
represented as vanishing action of linear differential operators �1 and �2 on function �:

�1� = 0, �2� = 0,

where

�1 = sin θ sin ω∂θ − cos ω∂ϕ + (h sin θ + cos θ cos ω)∂ω,

�2 = sin θ sin(σ + ω)∂θ − cos(σ + ω)∂ϕ + cos θ cos(σ + ω)∂ω.

Compatibility of equations (5.2), (8.1) means that commutator of operators �1 and �2 can be
expressed as its linear combination. The calculation of the commutator gives

�3 = [�1, �2] = h sin2 θ cos(σ + ω)∂θ + (h sin θ sin(σ + ω) + cos θ sin σ)∂ϕ

− (h sin 2θ sin(σ + ω) + cos 2θ sin σ)∂ω. (8.2)

Operators �1, �2, �3 are linearly dependent if and only if the following determinant vanishes

(h2 + sin2 σ) sin3 θ.

From the latter it follows that h = σ = 0. This implies that we deal with a partial case of the
more general situation σ = 0, which will be investigated separately.

9. Radial fluid motion

Let M = 0, UN �= 0. In this case we do not need the function σ , which differentiates the
angles 	 and 
 (see equations (4.1), (4.3)), since the tangential component of velocity vector
field vanishes. Therefore we will consider σ(t, r) = 0 throughout over this section.

Equation (5.4) gives

H(rN)r = 0. (9.1)

Linear combination of equations (5.5), (5.6) produces two relations for function ω:

rHN−1 cos ωωr + ωθ + rHt(NU)−1 sin ω = 0, (9.2)

rHN−1 sin θ sin ωωr + ωϕ + cos θ − rHt(NU)−1 sin θ cos ω = 0. (9.3)

Equation (5.6), taking into account (5.2), gives

rHt + hUN = 0. (9.4)

From equation (5.7) it follows that

D0N + N(Ur + r−1U) = 0. (9.5)

Equation (5.8) gives another equation for the non-invariant function ω

D0ω = 0. (9.6)

Finally, from equations (5.9) and (5.2) we have

rHr + 2H − hN = 0. (9.7)

Note that according to equations (9.2), (9.3) the case H = 0 leads to contradictory equations
for ω. This means that we can cancel the factor H in equation (9.1) and find N as

N = a(t)/r, (9.8)
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with an arbitrary function a(t). Equation (9.5) gives an expression for U:

U = −a′(t)r + b′(t)
a(t)

, (9.9)

with an arbitrary function b(t). Elimination of function h from (9.4), (9.7) and substitution of
expressions for N and U allow one to determine the function H as

H = f (ra(t) + b(t))

r2
, (9.10)

with an arbitrary function f . The argument λ = a(t)r + b(t) of the function f is a Lagrangian
invariant, i.e. it conserves along the particle’s trajectory: D0λ = 0. From (9.6) it follows that
ω = ω(λ, θ, ϕ). Finally, from (9.4) we obtain

h = f ′(λ). (9.11)

Substitution of the obtained representations into equations (9.2), (9.3) gives

f (λ) cos ωωλ + ωθ − f ′(λ) sin ω = 0, (9.12)

f (λ) sin θ sin ωωλ + ωϕ + cos θ + f ′(λ) sin θ cos ω = 0. (9.13)

The compatibility condition for these two equations could be found in the same way, as in the
previous section. We have

ff ′′ = f ′2 + 1. (9.14)

From (9.14) we find that

f (λ) = C1 cosh(C1λ + C2), C1, C2 = const. (9.15)

Note that one can make C1 = 1, C2 = 0 using the time and space dilatation and arbitrariness
in the choice of function b(t).

Now it remains to integrate an invariant subsystem, which is determined by
equations (5.1), (5.3). The density ρ is found from (5.1) in the form

ρ = a(t)
ρ0(λ)

r2
, (9.16)

with an arbitrary function ρ0. Two equations (5.3) form an overdetermined system for
pressure p: (−aa′′ + 2a′2) r − ab′′ + 2a′b′ +

r2a

ρ0(λ)
pr = 0,

D0p − A(p, ρ)

(
3a′

a
+

2b′

ra

)
= 0.

(9.17)

We observe here only the case of the polytropic state equation A = γp. In this case the second
equation of (9.17) is integrated as

p = p0(λ)a(t)3γ (λ − b(t))2γ . (9.18)

Substitution of this representation into the first equation of (9.17) gives a rather cumbersome
compatibility condition. It significantly simplifies if b(t) = 0. Then, equations (9.17) can be
transformed to Lagrangian variables (t, λ) and written in the form

pt = 3γp
a′

a
, pλ = ρ0(λ)

λ

(
a′′ − 2

a′2

a

)
= ρ0(λ)

λ
α(t). (9.19)

From the compatibility conditions of (9.19), we obtain

α = κa3γ ⇒ a′′ − 2
a′2

a
= κa3γ , κ = const.
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This equation is autonomous, therefore it can be integrated once:

a′2 = a4C +
2κ

3(γ − 1)
a3γ +1, C = const. (9.20)

Equation (9.20) also can be integrated in implicit form. The pressure is expressed in the form

p = κp0(λ)a3γ , p0(λ) =
∫

ρ0(λ)

λ
dλ.

Now we can integrate equations (9.12), (9.13) for the non-invariant function ω. The
general solution ω = ω(λ, θ, ϕ) is implicitly defined by the formula

F(η, ζ ) = 0, (9.21)

where F is an arbitrary function and

η = sin θ cos ω

cosh λ
− cos θ tanh λ, ζ = ϕ + arctan

sin ω

cos θ cos ω + sin θ sinh λ
. (9.22)

Note that expressions (7.16) and (9.22) formally coincide if we put τ = arcsin(tanh λ). It is
the reflection of the fact that cases 1 and 3 in classification (6.1) are degenerate subcases of
a more general situation 4. The latter is investigated in the next section. The result of this
section is formulated in the following statement.

Theorem 2. The solution of magnetohydrodynamics equations (3.1) of special vortex type
(4.3) for the pure radial fluid motions is determined by the formulae

U = −a′(t)r + b′(t)
a(t)

, H = cosh λ

r2
, N = a(t)

r
,

h = sinh λ, ρ = ρ0(λ)a(t)

r2
, λ = a(t)r + b(t).

(9.23)

Here ρ0(λ) is an arbitrary function. For the polytropic state equation p = Sργ , the pressure
is determined by

p = p0(λ)a(t)3γ (λ − b(t))2γ , p0(λ) =
∫

ρ0(λ)

λ
dλ. (9.24)

Functions a(t) and b(t) can be obtained from equations (9.17) after substitution of (9.24) and
separation of variables. In the partial case b(t) = 0, function a(t) satisfies equation (9.20).

The non-invariant function ω = ω(λ, θ, ϕ) is implicitly determined by formulae (9.21),
(9.22).

10. Coplanar magnetic field, velocity and radius vector

Now we observe case 4 of classification (6.1). It corresponds to the case when the radius
vector of any particle belongs to the plane defined by its velocity and magnetic field vectors.
Let us rewrite equations (5.4)–(5.9) for the case σ = 0. From (5.4) there follows an invariant
equation

D0(rM) − H(rN)r

ρ
= 0. (10.1)

Equation (5.6), taking into account (5.2), gives

rHt + hUN − hMH = 0. (10.2)

From equation (5.7), we obtain

D0(rN) + rNUr − (rMH)r = 0. (10.3)
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Another equation of invariant subsystem follows from (5.9) taking into consideration (5.2):

(r2H)r − rhN = 0. (10.4)

The overdetermined subsystem for the non-invariant function ω consists of equation (5.2) and
also from two equations, which are obtained from (5.5) and (5.8):

M sin θωt + (MU − ρ−1HN) sin θωr + Q sin θ cos ωωθ + Q sin ωωϕ + Q cos θ sin ω = 0,

(10.5)

Nωt + (NU − HM)ωr = 0, Q = r−1ρ−1(M2ρ − N2). (10.6)

Multiplication of equations (10.5) and (10.6) by N and M sin θ respectively and subtraction
give the following

Q(rH sin θωr + N sin θ cos ωωθ + N sin ωωϕ + N cos θ sin ω) = 0. (10.7)

From (10.7) we have two possible cases: Q = 0 and Q �= 0. We will consider these two cases
separately.

10.1. The special subcase

Let Q = 0. For the convenience we denote ρ = Z(t, r)2. Then we have

N = MZ. (10.8)

Further we will assume M �= 0. Equations (10.5) and (10.6) coincide and are reduced to

D0ω − H

Z
ωr = 0. (10.9)

The compatibility condition of (5.2), (10.9) is

D0h − H

Z
hr = 0. (10.10)

For further investigation it is convenient to introduce the new notations

U1 = U − HZ−1, M1 = r−1M, H1 = r2H, Z1 = r2Z.

Equations (10.1)–(10.4), (10.10) can be rewritten as

D̄0M1 + M1U1r = 0, D̄0H1 = 0, D̄0Z1 = 0,

H1r − hM1Z1 = 0, D̄0h = 0, D̄0 = ∂t + U1∂r .
(10.11)

System (10.11) must be extended by equation (5.1), which in the new notation is equivalent to

U1r +
r2H1

Z2
1

(
Z1

r2

)
r

− 2U1

r
= 0. (10.12)

From (10.11) there follows the functional dependence of functions H1, Z1 and h. Let us
observe the first case H1r �= 0. In this case one can represent the functional dependence as

Z1 = f (H1), h = g(H1). (10.13)

Substitution of relations (10.13) into the fourth equation of (10.11) allows one to express the
function M1 as

M1 = H1r

f (H1)g(H1)
. (10.14)

Substitution of expression (10.14) into the first equation of (10.11) gives

− H1

f (H1)g(H1)
U1r +

H1r

f (H1)g(H1)
U1r = 0.
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The latter equation produces the following possibilities

(a) U1 = U1(t), (b) H1 = H0(t)e
r .

One can check that case (b) leads to U1 = U1(t), i.e. it is a subcase of (a). For U1 = U1(t)

the first equation of (10.11) gives D̄0M1 = 0, which means that all functions M1,H1, Z1 and
h depend on one function µ(t, r), which satisfies the equation

µt + U1µr = 0.

Thus, the general solution of equations (10.11) under the assumption H1r �= 0 is given by the
formulae

U1 = U1(t), H1 = H1(µ), Z1 = Z1(µ),

h = h(µ), M1 = H1µ

h(µ)Z1(µ)
,

(10.15)

where U1 is an arbitrary function of t and H1, Z1, h are arbitrary functions of

µ = r −
∫

U1(t) dt.

Now we should observe equation (10.12). The analysis of equation (10.12) on the solution
(10.15) allows us to formulate the following statement.

Theorem 3. The overdetermined system of equations (10.11), (10.12) with additional
assumption H1r �= 0 has only the following two sets of solutions.

1. U1 = U0 eC1t , H1 = C1C2µ
3, Z1 = C2µ

2, M1 = M1(µ), h = 3C1M
−1
1 ,

µ = r − U0
C1

eC1t .

2. U1 ≡ 0, Z1 = Cr2, H1 = H1(r), h = h(r), M1 = H ′
1(r)(Ch(r)r2)−1.

Here C1, C2 are arbitrary non-zero constants and H1,M1, h are arbitrary functions of its
arguments.

Let us now observe the case H1r = 0 in (10.11). The assumption implies that

H1 = H0 = const, h ≡ 0. (10.16)

The overdetermined system (10.11), (10.12) is reduced to the following

D̄0M1 + M1U1r = 0, D̄0Z1 = 0, D̄0 = ∂t + U1∂r ,

U1r +
r2H0

Z2
1

(
Z1

r2

)
r

− 2U1

r
= 0.

(10.17)

Equations (10.17) form a well-defined system for functions U1,M1 and Z1.
Besides, there is an overdetermined system of two equations (5.3) for function p, which

must be observed on the obtained solutions of equations (10.11), (10.12). The compatibility
of the latter system is not investigated at the moment.

10.2. The general case

Here Q �= 0. The overdetermined system for function ω in addition to equation (5.2) includes
two equations, which follow from (10.5), (10.6):

Nωt + (NU − HM)ωr = 0, (10.18)

rH cos ωωr + Nωθ − hN sin ω = 0. (10.19)
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The compatibility condition of (5.2) and (10.18) is

ND0h − HMhr = 0. (10.20)

Another compatibility condition for equations (5.2), (10.19) is

rHhr = N(1 + h2). (10.21)

Equations (10.18), (10.19) for N �= 0 are compatible by virtue of invariant equations. The
case N = 0 was investigated earlier.

Thus, the invariant system is composed of the following equations: (5.1), (5.3), (10.1)–
(10.4), (10.21), (10.20). It is an overdetermined system of nine equations for seven sought
functions M,H , ρ,N,U, h, p. This system must be completed to involution. Further, we
will assume N �= 0 since the opposite possibility was completely investigated earlier.

Note that equations (10.20), (10.21) allow us to express both first-order derivatives of
h(t, r) in terms of invariant functions such that the right-hand sides of expressions do not
involve any other derivatives. The equations (10.2), (10.4) allow us to do the same for
function H. One can check that calculation of mixed second-order derivatives of each function
by two methods gives the same result by virtue of the equations of the invariant system. This
means that the invariant system is already in involution.

It is convenient to use the following notations:

M1 = r−1M, H1 = r2H, N1 = rN, h = tan τ. (10.22)

Equations (10.2), (10.4), (10.20) and (10.21) can be rewritten as

D0τ = M1, H1τr = N1,

D0H1 = M1H1 tan τ, H1r = N1 tan τ.
(10.23)

The last two equations of (10.23) are equivalent to the integral H1 cos τ = C with an arbitrary
constant C. One can make C = 1 using the dilatation transformation, which is admitted by
the initial system (3.1), i.e. without loss of generality we can assume

H1 = (cos τ)−1. (10.24)

The invariant system becomes the following:

D0M1 +
2

r
UM1 − 1

r4ρ cos τ
N1r = 0, D0 = ∂t + U∂r,

D0N1 + N1Ur − 1

cos τ
M1r − M1N1 tan τ = 0,

D0p + A(p, ρ)

(
Ur +

2

r
U − M1 tan τ

)
= 0,

D0U +
1

ρ
pr +

N1N1r

r2ρ
− rM2

1 = 0, τr = N1 cos τ,

D0ρ + ρ

(
Ur +

2

r
U − M1 tan τ

)
= 0, D0τ = M1.

(10.25)

The overdetermined system (10.25) of seven equations for six sought functions is in involution.
It is also worth noting that function τ is determined from system (10.25) with arbitrariness in
one constant. In fact, the initial data of the well-posed Cauchy problem for system (10.25) are

M1(0, r) = m(r), N1(0, r) = n(r), p(0, r) = p0(r),

U(0, r) = u0(r), ρ(0, r) = ρ0(r), τ (0, r0) = τ0.
(10.26)

Here m, n, p0, u0, ρ0 are arbitrary functions of r; τ0 is a constant. Therefore function τ(t, r)

is defined by its value on a fixed sphere r = r0 at initial time t = 0.
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We now turn to finding the non-invariant function ω. Equations for ω are (5.2), (10.18)
and (10.19). In the new notations (10.22), we can rewrite it as

N1ωt + (N1U − cos−1 τM1)ωr = 0,

cos ωωr + N1 cos τωθ − N1 sin τ sin ω = 0,

sin θ sin ωωθ − cos ωωϕ − tan τ sin θ − cos θ cos ω = 0.

(10.27)

The latter system is also in involution on the solutions of the invariant subsystem (10.25).
Equations (10.27) can be integrated; its general solution is implicitly determined by the same
formula as in the previous cases

F(η, ζ ) = 0, (10.28)

where

η = sin θ cos ω cos τ − cos θ sin τ,

ζ = ϕ + arctan
sin ω cos τ

cos θ cos ω cos τ + sin θ sin τ
.

(10.29)

The result of this section can be formulated as follows.

Theorem 4. The solution of magnetohydrodynamics equations (3.1) of special vortex type (4.3)
for the case of coplanar radius vector, velocity and magnetic field vectors is determined by the
invariant equations (10.25) and by the implicit formulae (10.28), (10.29) for the non-invariant
function ω = ω(t, r, θ, ϕ).

11. Discussions

The mathematical analysis of the singular vortex in ideal magnetohydrodynamics reveals the
following facts.

• There exists a non-trivial O(3) partially invariant solution of the ideal MHD equations.
• An irreducible solution exists only in the case when the velocity, magnetic field and radius

vectors of any particle are coplanar.
• The maximal arbitrariness of the solutions is six arbitrary functions of one argument.
• The description of the fluid flow, governed by the obtained solution, is divided into two

parts. The first one is a reduced system (10.25) of PDEs with two independent variables,
which describes the dependence of all functions on time and on radial coordinate. The
second part of the solution is an implicit equation (10.28) for function ω, which determines
the vector field on the spheres r = const. Combination of these two parts of the solution
gives a description of the plasma motion.

The further investigation is separated into two branches. The first one is the analysis
of the invariant system (10.25). The latter, being itself a system of partially differential
equations, serves as a subject of symmetry analysis. The invariant solutions of system (10.25)
are described by ordinary differential equations and could be observed in detail. The second
branch of investigation is a description of the vector field on the sphere r = const, defined
by the implicit equation (10.28). This problem is non-trivial; its solution leads to the analysis
of the wave fronts and the curve’s caustic on the sphere. Besides, the physical description of
the plasma flow governed by the singular vortex solution should be given. The designated
investigations will be presented soon in a separate article.
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